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Scaling invariance of the homoclinic tangle
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The structure of the homoclinic tangle 0% Megrees of freedom Hamiltonian systems in the neighborhood
of the saddle point is invariant under discrete rescaling of the system’s parameters. The rescaling constant is
derived from the separatrix map and the Melnikov formula. Invariant manifolds for the periodically modulated
Duffing oscillator are computed numerically to confirm this property. The scaling is related to the recently
found invariance of the separatrix map under a discrete renormalization group. A possibility to extend the
scaling invariance to different systems is demonstrated. The equivalency conditions under which two systems
have the similarity of their chaotic layer structure near the saddle are derived. A numerical example shows a
Duffing oscillator and a penduluifacted on by different periodic perturbatigonsgith the same structure of the
tangle.
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[. INTRODUCTION time-independent pattl, and a small time-periodic pertur-
bation: H=Hg(x,y) + eV(x,y,t), e<1. For e#0 and ge-
Hamiltonian systems with low number of degrees of free-neric V, the separatrices of the unperturbed system are re-
dom arise in a variety of physical applications, such as adplaced by chaotic layers. Ae—0 the width of the layer
vection of passive particles in incompressible flovis-7], decreases, but it retains the full complexity of its structure.
geometry of magnetic field lines in tokamal&9], electron  The width of the chaotic layer has different expressions de-
motion in a latticd 10,11], celestial mechanid42,13, etc. A pending ore and the frequency of perturbation, and it can be
generic property of such systems is the coexistence of chavaluated using the separatrix ma@}. There were different
otic and regular trajectories. The partition of the phase spacenprovements and generalizations of the separatrix map in
into regular and chaotic components is nontrivial, and leadRefs.[28,29.
to peculiar statistical properties of the trajectories in the cha- It was found in Ref[30] that the structure of the layer
otic componen{14-18. For example, the variance of the near the saddle-point changes periodically witte.liMore
particle ensemble grows superdiffusivel?~t“, u>1, the  specifically, the phase portraits in the saddle-point neighbor-
distribution of the Poincareecurrences is non-Poissonian, hood are invariant under simultaneous rescaling of the ca-
etc. The mechanism responsible for the anomalous statisti¢gnical coordinates and the perturbation amplitude according
is the stickiness of the trajectories to the boundaries betweeto e—\ ¢, (x,p)—\Y4(x,p), where\ is a constant depend-
the chaotic and regular components. The boundary zone iag on H, andV. The origin of this property was traced to
stratified with partial barrierécantor) and has an infinite set the renormalization invariance of the corresponding separa-
of islands of regular motion. Due to itsnulti)fractal struc-  trix map. This rescaling was found in a variety of systems
ture, the boundary zone acts as a particle trap: the distriby3p—34 and its manifestation in a laperiodic oscillations
tion of exit times has long algebraic tails. The connectionys transport characteristics was observed numerically
between the structure of the phase space and the transp t3]34]_
properties was investigated theoretically and numerically ina | this work, we further investigate the scaling invariance
number of workg3,15-17,19-2p To achieve a comprehen- g the chaotic layer originating from the renormalization in-
sive description of particle kinetics in the chaotic layer ayarjance of the separatrix map. Our results include the for-
knowledge of fractal properties of the boundary zone is necy,1ation of the scaling property in terms of the system’s
essary. y , _ parameters and the effect of the rescaling on the invariant
The transition from the regular, integrable dynamics tomanifolds attendant to the saddle. We show that a similarity
chaotic dynamics was studied extensively in the frameworlyeqyeen the chaotic layer structures extends to systems with
of 15 degrees of freedom near-integrable syst¢&)86,27.  differentH, and/orV, i.e., the layer structure possesses cer-
In such systems the Hamiltonian is given by a sum of aain universality. We derive the equivalency conditions that
have to be satisfied in order for the two systems to have the
same layer structure near the saddle. As an example, we

*Electronic address: leonid@cfm.brown.edu; demonstrate that for anperiodically perturbedDuffing os-
URL: http://www.cfm.brown.edu/people/leonid/webpage cillator there is &periodically perturbedpendulum with the
TAlso at Department of Physics, New York University, New York, same layer structure.
NY 10003, USA. The paper is organized as follows. In Sec. Il we show how
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the formulation of the rescaling property in terms of system’s mvla?
parameters follows naturally from the expression for the M(7)=Mgsin(v7+ ¢o), Md:m- (8)
Melnikov function. The Duffing oscillator is taken as an ex-
ample; the rescaling of the homoclinic tangle is confirmed byzeros of the Melnikov function
numerical construction of the invariant manifolds. In Sec. Ill
the connection to the corresponding invariance of the sepa- ty=mnlv, X,==* \/Ea/cosr( mnlv), neZ (9)
ratrix map is shown. In Sec. IV the case of two different
systems is addressed. correspond to the primary intersection points/ét and W".
The primary intersection points accumulate near the

Il. MODULATED DUFFING OSCILLATOR saddle, wher¢n| is large and

Consider a Duffing oscillator with periodically modulated X, ~p,~*+ 2ae "IN, (10)
frequency
The change of the Hamiltonian parameter Aa changes
H(p,X,t) = p?/2—x%/2[ 1+ e cog vt + o) | +x*/4a%, the location of the primary intersections in the vicinity of the
(1 saddle unless we take

where e and v are the amplitude and the frequency of the A=AT=e ™" m=+1+2 . (11)
modulation, andh is the parameter controlling the size of the é
Unperturbed double-well pOtential. This SyStem has an equl‘]Vhen the intersections are mapped to each Other:
librium saddle-point at zerox,=0, p;=0. Stable and un-
stable manifoldd® and WY, associated with it are defined Xn—Xn+em (N>0), X,—X,—m (N<0). (12
as sets of points with trajectories asymptotic to the saddle in
forward and backward time, respectivéB5]: In order to preserve the structure of the homoclinic tangle
two other conditions have to be satisfied. First, the area of
WS={(x,p,1)|x(t;X,p,t) =0 as t;—=}, the lobegthe regions bounded by the pieces\afi and W
between two adjacent primary intersections, see, e.g., Ref.
WU={(x,p,t)[x(t;x,p,t)—=0 as t;——o}, (2)  [35]] has to stay the same after the rescaling, and second, the

) ) ) ) manifold orientation at the intersection has to be preserved.
wherex(ty;x,p,t) is a solution of the equations of motion A |obes have equal area

with the initial conditionx(t) =x, p(t)=p.
Whene=0, the energfE=Hy(p,X) is conserved, and the

stable and unstable manifolds coincide along the separatrix AL=

curveHq(p,x)=0. There are two families of aperiodic sepa-

ratrix solutions:

—eMylv, (13)

thea
EJ M(7)dr
tn

whereMy is defined in Eq(8), and to keep it constant the

[2a perturbation amplitude has to be rescaled accordinfefto
Xt =0 , (3)  —\z°"el. To preserve the manifold orientation, the sign of
cosht—17) e has to be changed whem is odd, which leads to the
JZasinht—n) following scaling:
- T
ps(t,T): - Cosﬁ(t_ 7-) y (4) a*))\g\a’ €4>(_ 1)m)\;2m6. (14)

Note, that changing the sign efis equivalent to the shift of
the perturbation phase by, ¢o— ¢o+ .

It is not evident yet whether the secondary and higher-
order intersections will be mapped to each other by the
above scaling. In the following section we will show that the

16a2 separatrix map that approximates the chaotic layer dynamics
T(E)=Inﬁ, (5)  for smalle is invariant under the above rescaling, and, there-
fore, the structure of the homoclinic tangle near the saddle

Whene#0, WS andW! intersect transversely and form a Should be preserved. _

whereo is +1 for the right branch and-1 for the left one.
The solutions are parametrized bythe time of the center of
the pulse(maximum of|x|). The period of near separatrix
trajectories(with E<1) diverges a£E—0 as

can be estimated by Melnikov formula6,35; in Fig. 1 shows the manifolds for the Duffing oscillatdn
for v=37/2, e=€3=0.1,a=ay=1. The rescaling constant
d(7)~eM(71)/|VHy|, (6)  for this frequency is\,=exp(m/v)=1.947 ... . According
to Egs.(11), and (14), the same system with; = —)\;Zeo
where the Melnikov integral is given by: =-0.0%... anda;=\,a,=1.947 . .. will have the same
structure of the manifolds. The right column of Fig. 1 shows
M(7)= fﬁwps(t;r)xs(t;r)cos{ vt+ do)dt, 7) the manifolds for these values _afand €. The st_ructure of
— the tangles around the saddle is remarkably sinftattom
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FIG. 1. Top row(pictures at different scalelnvariant manifolds for Duffing oscillato¢l) with »=3/27. Left column: e;=0.1, a,
=1; right column:e;=0.027,a;=1.947. Bottom row(pictures at the same scal€oom of the saddle-point neighborhood.

row of Fig. 1). The difference between the two pictures is . oH, . oH
due to the relatively large perturbation amplitudes used: the X= ay Y=~ x
width of the chaotic component near the saddle is of the

same order of magnitude as the characteristic size of thg defined by a Hamiltonian

potential wella. Although it is hard to discern it from the top

row of Fig. 1, it is clear from Eq(12) that the effect of the He(Xy, 1) =Ho(X,y) + eV(X,y,t) (16)
rescaling on the global structure of the tangle is the appear-

ance of an extra primary intersectiéand, therefore, an extra Nt iS given by the sum of an integrable pelg(x,y) and a
lobe). time-periodic perturbation

The manifolds were computed via the straddling algo- _
. . . . ; : + =
rithm [36], the integration was carried out with a fifth-order VYt 2aly) =Vixy.H an
symplectic schemg37], with the time stepAt=0.001 and  \yith frequencyr and a small amplitude<1.
spatial resolution of the manifoldsx=0.01. The choice of a We assume that the unperturbed Hamiltonidg has a
high-precision integration scheme in combination with aggqqje point Xs,Ys). A coordinate system can always be
very short time step was necessitated by a sensitive depefrosen in such a way that the saddle is at the origin,
dence of the near-saddle dynamics on numerical errors. —y.=0, andH, has the first terms of Taylor series expan-

sion in the form

lll. SEPARATRIX MAP AND THE ENERGY Ho(X,y) = Eg+y?/2—x?/2+ 0(x?,y? xy). (18)

SCALE CONSTANT
In the absence of perturbatione€0) the energyE

A generic near-integrablesldegrees of freedom Hamil- =Hg(x,y) is a constant of motion, and the trajectories lie of
tonian system the level curveddy(x,y) = const.
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The separatrix is the level curve passing through the
saddle point. It self-intersects at the saddle, where it is tan-
gent to the linex==*y. In the following, we assume that
there is no other fixed points on the separatrix. In that case it
consists of two branches, each branch corresponds to a fam-
ily of aperiodic homoclinic solution$xg(t—7),y2(t—7)].

The sign variable o=*x1 differentiates between the
branches. These solutions have a solitonlike shapeo(re-
sponds to the soliton’s cenjertheir asymptotics follows
from Eq. (18):

—+n

x{(t)=oexpxt), yI(t)=*oexp*t), t—Foo.

(19 s s s . s
a a4 628 B.42 126
The construction of the separatrix map is based on generic .
properties of trajectories withE—E¢[<1. Such trajectory FIG. 2. Definition of the separatrix map variables.
looks like a periodic sequence of localized pulses, separated
by relatively long intervals when it stays in the neighborhood E— [Ho V], 21)

of the saddle. Depending on the signf Eg, a trajectory
may pass the saddle-point neighborhood once per period, ighere[,] denotes the usual Poisson bracket. The change of
which case we will refer to it as a single passage trajectoryne energy during one pulse is then
or twice per period, in which case we will call it a double
passage one. The structuretdf determines which sign of T+ T(Ep)/2
E— E, corresponds to single passage trajectories, and which AE(7h,00)= GJ e [Ho,V]dt, (22)
to double passage ones. In both cases the interval between = T(En)
the pulses diverges logarithmically whén- Es: wherex(t) andy(t) under the integral are taken along the
trajectory. To evaluate the integral two approximations are
T~In(B/[E-E4), E—Es, (20) made: x(t) and y(t) are replaced bw;(t—7,) andyg(t
] ) i —7,), and integration limits are extended tox [see Refs.

where B is the energy scale constantt is defined by the 38 43 for detaill. Then
length of the separatrix loop and therefore depends on the
specific form of the potential. Here we restrict our consider-
ation to the symmetric case, wheeis the same for both AE(my v(Tn)”fjf
separatrix branches, however, the results can be generalized

to the case wheB depends owr. The shape of each pulse is \yhere M (7,,0,) is the Melnikov integral, which does not

close to that of the separatrix solitops’(t—7),y?(t—7)].  depend orE,,, and is periodic inr,:
A double passage trajectory consists of a series of alternating

pulses witho==*1, a single passage one has pulses of the M(7y,00)=M(1q+ 27l v,0,). (24)
same shape.

When the perturbation is present, the energy is not con- The energy between the pulses is almost constant and
served anymore, and the near-separatrix motion becomesjual to the midway energg, ., therefore, the interval
chaotic. The trajectories still look like sequences of pulsesbetween the pulses can be approximated using(Zy.as
but the interval between them is not constant and there is no
particular order in alternation between different branches, be- Tne1~ Ta=IN(B/[Eq 1~ Ed). (29

cause the energy can change sign during the motion. T . : . _
sequence of pulses can be described by three discrete vgﬁhe equation fore, depends on which sign of the—Es

ables:7, : ime of the middle of theth pulse £, : energy at corresponds to double passage trajectories. The trajectory

the point of the nearest approach to the saddle betwgen EWItChcisrr?:piﬁg)iob?gztﬁeat ézgasaed?r?é;o_r U“ﬁ’ng stavs
andr,, ando,: sign variable indicating which branch of the _"*1 b P g ] Y, Y

. : . on the same branch otherwise. Introducing the sgn constant
separatrix was followed by theth pulse. Figure 2 illustrates s=+1 for the case when double passage trajectories have
the definition of these variables. E<E. ands= — 1 otherwise we obtain

A map, approximating the dynamics of,E,o) was in- s '
troduced in Ref.[8] [see, also, Refs[27,38,39] and is 0ns1=507SGNE . 1—Eo). (26)
known as theseparatrix maplt provides an efficient tool for
the study of different properties of the near-separatrix dyit is convenient to introduce new variables: an energy mea-
namics: the width of the chaotic layer, the structure of resosured from the separatrix and the perturbation phase at the

w[HO,V]dtZGM(Tn,Un), (23

nant islands inside it, transport phenomena, [0-47. center of thenth pulse:
To construct the separatrix map, we need the equation for
the evolution of the energy: h,.=E,—Es, ¢,=vr,, mod 2. (27)
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Now the separatrix map can be written as: in the neighborhood of the saddles. We will list the condi-
tions for this equivalency, and support it with numerical ex-
hni1=hpteM(én,00), amples.
Consider two near-integrable Hamiltonian systems of the
¢ni1=PatvInB/|h, 4|, mod 27, following form:
0n+1= 50, Sy q). (28 HO=H{(x,y) +&fi(x,y)sinpt, i=12. (32

If there is a parametew in the Hamiltonian, i.e.H,
=Hy(x,p;a), V=V(X,p,t;a), then the energy scale con-
stantB and the Melnikov integraM will depend on this

We assume, that botH{" and H{?) have saddle points at
zero, and their Taylor expansions at the saddle are

parameter. The invarian_ce of the separatrix map with respect Hg): Eg)+y2/2— Y2X22+0(x2,y?,xy), i=1,2.
to the parameter rescaling can be formulated as follows. (33
Any change of Hamiltonian parametesis— o' resulting
in the rescaling oB according to It follows that the interval between two velocity pulses of
" ) near separatrix trajectories diverges logarithmically in both
B(a)—»)\ B(a ), m= il,i 2, PP (29) Systems as
together with the rescaling of the perturbation amplitude
o~y lin—— =
e—eM(a’)IM(a) (30 Ten Mgy 712 (39

leaves the separatrix m&8) invariant, if the rescaling con-  56yided there is no other saddles on the separatrices. The
stant is an integer power of energy scale constari depend o but not onv( (see,

N=exp(2mv). (31) ?ec.1 I;I; Separatrix map for each system can be written as
i=1,2):
Indeed, Eq(30) preserves the produeiM, so the first equa- 0 0 i (i)
tion does not change, while E¢9) results in the appear- Eni1=En'+€eMi(oy’)singy”,
ance of an additional termmIn\ in the second equation. , . .
With X chosen according to Eq31), this term is zero, ¢8) 1=+ (vi1y)In(B; /|EY),—E4), mod 2,
mod 27, therefore the second equation is also preserved. _ _ _ _
The third equation is unaffected by Eq89) and (30). The ol 1=si0Y) sgrES) - EY). (35
above invariance of the separatrix map is similar to the in-
variance with respect to the rescalingeoéndh by the same Sign constans; is s;=1 if the double passage trajectories
constant\ [given by Eq.(31)], which was obtained in Ref. haveE<Eg, ands;=—1 otherwise.
[30]. Let us rescale the energy according to
The scaling(14) derived in Sec. Il coincides with Egs. (i) 0 =)
(29 and (30) (with Azhi due toB~a?) except for the h=s(EY—ES")/B;. (36)

factor (—1)™ in the formula for the perturbation amplitude :
e. This difference is due to the nature of the separatrix ma;;r he maps(35) can be rewritten as

variables {,,7,), which are taken at different points in h®)  =h® +[seM;(a)/B;]sin o

time. The phase variable in E(28) can be shifted in order to ntioon R A n
hronize the tw iables. Th Iti tions, i i i

synchronize the two variables. The resulting equations D = O (v 1y)In|h),|, mod 2,

known as the shifted separatrix mggd], require the pertur-
bation phase shifin7 in order to stay invariant under the
rescalingsee, Refs[30,37 for detail]. Such shift is equiva-
!ent to the ffactor CLT In the rescaling of the_ amP"“.Jde' It follows that the separatrix maps for the two systems are
i.e., the scaling Eq.14) derived for the homoclinic coincides equivalent if

with the scaling for the corresponding shifted separatrix map.

o=y sgnhil;. (37)

vilyi=valys,
IV. SCALING UNIVERSALITY

In this section, we will formulate the universality property Ma(+DIMy(= 1) =M(+ 1)/Mo(~ 1),

of chaotic layer structure in near-integrable Hamiltonian sys- S;e,M /By =5,6,M,/B,. (39)

tems with 1 degrees of freedom. Our main conjecture is

that if separatrix maps, approximating two different systems The first condition means that the perturbation frequency
are equivalenti.e., can be made the same by an appropriatesshould be the same when measured in terms of the corre-
change of variablgsthen the phase portraits of these sys-sponding saddle-point eigenvalge. The second condition
tems are similafi.e., have the same topology and can berequires the ratio of Melnikov integrals for two separatrix
obtained from each other by the rescaling of the coordifatesdranches to be the same for both systems, i.e., the perturba-
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tions f;(x,y) should have the same symmetry. The third con- The asymptotics of the period of near-separatrix trajecto-
dition relates the perturbation amplitudes, it can always beies for Duffing oscillator is given by Eq5), which gives
satisfied by setting By=16a2. For the pendulum

$M B, 39 To(E)~In32/E-E4| (43
SHMoB; 39

€Er= €1
andB,=32.

This equivalency of the separatrix maps is reflected in the The Melnikov integral for Eq(41) is

structure of the homoclinic tangle: under the conditi¢d®) T2 (2 + 4)a?
the phase portraits ¢4(*) andH(?) are similar to each other M(7)=Mgsinvr, My=— 6 Sna2) (44)
in the saddle-point neighborhood. The scaling factor follows v
from Eq. (36): and for the pendulum
X1—(B2/B)Y,,  y1—(B/B)YAy,. (40) _ 27mv?
M(T)—MpSIHVT, Mp—m. (45)

To verify the above universality, we numerically construct

homoclinic tangles for two different systems, satisfying EqS'Note that the Duffin : _ :
; . , : : S g oscillator hag=1 (phase space is a
(38). The first systemis a Duffing oscillator with periodically plana, but the pendulum has,= — 1 (phase space is a cyl-
modulated nonlinearity inden
The symmetry of the perturbation is the same in both
systemsM(+1)=M(—1), and the second condition in Eq.

where ey and vy are the amplitude and the frequency of the(38) is satisfied automatically. To satisfy the other two, we

modulation, and is the parameter of the unperturbed poten-set
tial. The second system is a parametrically perturbed pendu-

HY(p,x,t)=p/2—x?12+x*/4a%(1+ €4 cosvgt), (41)

. Yo SqMpBg
lum with the Hamiltonian V4=V, €4 €p SpMZBp = epea2/(y2+4). (46)
H.(p,x,t)=p%2+(1+ €p COSV,t) COSX, (42 We have numerically computed the stable and unstable

invariant manifoldsA° andW" attendant to the saddle point
where v, and €, are the perturbation frequency and ampli- at the origin for both systems. The results are presented in
tude. Figs. 3 and 4. We have used the following parameter values

FIG. 4. Invariant manifolds of
the pendulum (42) with the
equivalent parametergsee, Eq.
(46)]: vp=4, €=-0.0456...
(@) Overview; (b) zoom of the
saddle-point neighborhood. Axes
are scaled according to E@40)
with respect to Fig. ).
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for the pendulume,=—-0.04% ..., v,=4. Corresponding backbone of the chaotic layer, its geometry determines trans-
values for the Duffing oscillator follow from Eq46): e4= port properties of particles inside it. Due to the complexity of
—0.01% ..., vqy=4. Despite different forms ofi, andV, the tangle the problem of determination of fractal character-
and the difference in global topology of the phase space, thistics of the chaotic compone(and of the resulting transport
central parts of the two homoclinic tangles practically coin-exponentsdirectly from the Hamiltonian remains largely an
cide when the axes are scaled according to(EQ). open question. The scaling similarity of the tangle demon-
strated in this paper elucidates its dependence on the sys-
tem’s parameters and has important consequences for par-
) _ _ticle kinetics(such as Ire-periodic variation of the transport
Understanding the structure of the chaotic layer and itgharacteristics The universality of the scaling, derived in
dependence on the parameters of the Hamiltonian is a key 19ec. |V, extends the invariance to different systems and al-

many problems in physics, including cross-stream mixing iNows to relate their statistical properties. The details of this
geophysical flows, orbital and spin-orbital resonances in cerglation will be discussed elsewhere.

lestial mechanics, destruction of magnetic surfaces in toka-
maks, and many others. The width and the rough location of
the layer are considered as the most important layer charac-
teristics, but when the statistical properties of the particle

motion are sought, the knowledge of its fine struct(tte L.K. was supported by the Office of Naval Research un-
multifractal boundarybecomes essential. The connection toder Grant No. NO0014-93-1-0691. G.Z. was supported by the
the anomalous particle statistics provides a motivation fotJ.S. Navy Grants Nos. N00014-02-10056, N00014-97-1-
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